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Abstract

This paper introduces VeriClaim, a computational fact-checking system that
enables the automatic monitoring and verification of factual claims. VeriClaim is
comprised of two computational modules: the claim-spotter, which first identifies
check-worthy factual statements from swaths of online information, and the claim-
checker, which verifies each statement using evidence retrieved from a multitude
of knowledge resources. These two components are integrated and deployed in
several ways, including a content-rich website and Chrome browser extension. 1

1 Introduction

Figure 1: VeriClaim System Architecture

Each year, misinformation costs the world economy $80 billion, damages the trust of over 200 million
Americans in their government, and improperly sways public opinion on critical topics including
political elections, legislative policy, and healthcare. Unfortunately, due to the sheer amount of
information produced on modern Internet platforms, as well as limited staffing at fact-checking
organizations, many problematic claims go unnoticed and unchecked [1]. Our efforts to mitigate
misinformation would benefit greatly from a system that could efficiently identify, track, and check
factual statements.

However, this fact-checking manpower shortage is only part of the problem. We also fail to effectively
communicate fact-checks to the general public. Imagine someone scrolling through their favorite
news outlet over morning coffee; they must not only (1) actively question everything they read while

1Code and additional resources are available at https://vericlaim.github.io/
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on the lookout for questionable statements, but also (2) have the dexterity to research and adjudicate
the veracity of these claims.

To help combat these issues, we introduce VeriClaim: a state-of-the-art automated fact-checker with
two key components: claim-spotting and claim-checking. The claim-spotting module is tasked with
sifting through bodies of text and extracting statements that are both factual in nature and salient to
the general public. Given that there is far too much information on the Internet for humans to review
manually, effective automation at this step is key. This is followed by claim-checking, which verifies
claims by cross-referencing repositories of known fact-checks and querying knowledge bases [2]. To
the best of our knowledge, there is currently no system able to autonomously monitor large bodies of
text and fact-check the salient claims from end-to-end.

In the long-run, it is our hope that VeriClaim can benefit both fact-checkers and the general public.
On one hand, VeriClaim would help fact-checkers focus on what they do best (performing novel,
in-the-field research) by automating grunt work. For the general public, we hope that the various
deployed applications will help bring fact-checks to the users and thus minimize the distance between
them and the truth.

2 Technical System Overview

As Figure 1 suggests, our pipeline is divided into two components: claim-spotting and claim-checking.
The input consists of any type of textual document such as tweets, news articles, webpages, etc., and
the output is a series of verdicts that describe the estimated factuality of each check-worthy claim in
the input.

2.1 Claim-Spotting Framework

The claim-spotting framework is implemented exactly as detailed in Gradient-Based Adversarial
Training on Transformer Networks for Detecting Check-Worthy Factual Claims [3]. They provide a
convenient publicly-accessible API endpoint 2 for queries.

To summarize briefly, the authors formulate claim-spotting as a classification task; that is, a statement
can be categorized as either check-worthy or non-check-worthy. They find that integrating a novel
gradient-based adversarial training algorithm on top of such a model yields better results due to
regularization. Their work achieves state-of-the-art performance on a challenging politics-based
benchmark dataset and is thus a good fit for this work.

2.2 Claim-Checking Framework

Figure 2: Claim-Checking Framework

We frame claim-checking as process where a system scours the Internet for documents that are related
to a given claim w, which will then be used to either confirm or deny its veracity. More formally,
given w and a set of related documents d, a transformer-based model denoted VCCheck performs the
task of stance detection on each piece of evidence d ∈ d.

2https://idir.uta.edu/claimbuster
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Stance detection is formalized as a classification task, where the relationship between d ∈ d and w is
categorized into one of 4 classes: agree, discuss, disagree, and unrelated. See Table 1 for additional
details and examples.

Table 1: Stance Detection Task Definition and Examples

Class Definition Sample Evidence for: “Unemployment rate is at an all-time low”
Agree d supports w At 2.4%, unemployment is the lowest it’s been in our nation’s history.
Discuss Factuality of w unclear The unemployment rate is unknown at this time.
Disagree d refutes w As low as it is today, the unemployment rate was lower in 1936.
Unrelated d is unrelated to w Chicken nuggets are Charles Barkley’s all-time favorite food.

Given a method of performing stance detection, we now consider the challenge of selecting d. We
design VeriClaim to query 3 distinct resources to retrieve documents related to w, which will later
be passed to VCCheck to verify the veracity of w:

• Knowledge Bases: VeriClaim will query trusted knowledge bases such as Wolfram Alpha to
retrieve specific factual information regarding w.

• Fact-Check Repositories: To take advantage of the work already done by human fact-checkers,
VeriClaim will search trusted fact-check repositories for existing reports related to w.

• Internet Resources: A curated list of trusted internet resources is queried to discover unstructured
evidence related to w.

We also define an auxiliary Relevancy Score RS to quantify the relevance between w and d:

RS = 1− p(y = Unrelated | w,d; θVCCheck
) (1)

2.2.1 Stance Detection Transformer

We first discuss VCCheck, since its formulation is a necessary prerequisite for processing all 3 types
of evidence. Each time we pass a claim-evidence pair x = (w,d) into the model, it goes through the
following components:

• Documentation-Level Tokenization: Many articles are too long to pass into the transformer
at once. 3 To address this concern, we split d up into components where each has a length
upper-bounded by the architectural limit. This effectively expands the input into a “dataset”
X = {(w, c) | c ∈ d}. Each pair is passed into the transformer separately, and results are
aggregated at the end.

• Embedding Process: Next, each input pair (w, c) ∈ X is embedded into an n-dimensional
space. As seen in Figure 2, embeddings for w and d are separated by the embedding for the
[SEP] token to indicate the boundary between a claim and its supporting evidence.

• LM Transformer + Dense Layer: The embedded input is then transformed into a latent repre-
sentation via a sequence of {self-attention + feed-forward} layers, which is finally passed through
a fully-connected layer to extract the final classification. Each dataset element Xi gets an output
in R4, where each logit represents a stance detection class.

• Aggregation: Finally, the tokenized portions of X are recombined via averaging to give a final
stance prediction. The end-to-end stance detection pipeline can be expressed concisely as:

stance_detect(x) = f(X = {(w, c) | c ∈ d};θ) (2)

=

 1

|X |
∑

(w,c)∈X

VCCheck(w, c;θ)j

∣∣∣∣∣∣ 0 ≤ j < 4

 (3)

To train VCCheck, we utilize the Fake News Challenge (FNC) stance detection dataset, which is
described in additional detail in Section 3.

3512 token is a common upper limit on input sequence length.
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2.2.2 Evidence Retrieval & Evidence-Level Verdicts

In this subsection, we outline VeriClaim’s evidence retrieval scheme, which consults 3 trusted
categories of resources to find evidence d that may confirm, debunk, or support discussion of w.

Knowledge Bases: The Wolfram Alpha knowledge base serves as a reliable and constantly-updated
source for knowledge. Responses from the Wolfram knowledge base is conveniently given in raw-text
form. However, given a claim w, we must consider the challenge of converting w into a query. Since
Wolfram accepts natural-language queries, we turn to Question Generation (QG) models to transform
w into an interrogative question q. See Table 2 for examples of Claim-Question pairs.

Table 2: Examples of Claim-Question Pairs

Claim Sample Question
Barack Obama was the 10th President of the US. Who was the 10th President of the US?
Each year, millions die from homicide in the US. How many people die from homicide in the US per year?
Vaccines cause autism. What causes autism?

Neural models have recently exhibited state-of-the-art performance on QG tasks [4, 5]. Particularly,
Microsoft Research’s Unified Language Model (UniLM) Framework [5] has achieved top results on
SQuAD-QG [6]. Thus, we employ UniLM to generate high-quality q from w.

Not all interrogative questions generated by UniLM will be suitable for querying Wolfram Alpha,
so we employ Wolfram’s Fast Query Recognition API 4 to filter out unsuitable queries. After the
question pool is deemed clean, Wolfram’s Spoken Results API 5 is used to generate natural-language
responses to all q. See Figure 3 for a visualization of this process.

Figure 3: Knowledge Base Query Process

Applying VCCheck to the claim-evidence pairs from this stage returns a matrix Rkb ∈ RNkb×4, where
each row represents a piece of evidence and the 4 columns correspond to the 4 stance detection
classes.

Fact-Check Repositories: To select additional evidence, VeriClaim also searches for existing
fact-check reports from reputable institutions including Politifact, Snopes, and Fullfact. To execute
such queries, we apply the Google Fact Check Explorer (FCE) API 6, which returns a list of relevant
claims given each input, as well as the truth verdicts assigned to them by professional fact-checkers.

However, determining the relationship between these “related fact-checks” (i.e. pieces of evidence)
and the original claim is not trivial; we propose a two-step process to solve this. First, VCCheck is
applied to evaluate agreement and relevance between the input claim and each related claim; this
returns a matrix Rrepo ∈ RNrepo×4, again with each row representing one claim-evidence pair and
each column representing a class. Then, for each related claim, if the associated verdict is false, we
swap the agree and disagree scores from VCCheck.

Internet Resources: Finally, to take advantage of unstructured data, we build a pipeline to extract
relevant evidence from Internet articles. We use the Media Bias Fact Check (MBFC) Repository,
which contains 2,500 websites manually-annotated for factuality, to set up 4 Google Custom Search
API 7 Engines:

4http://products.wolframalpha.com/query-recognizer/documentation/
5http://products.wolframalpha.com/spoken-results-api/documentation/
6https://toolbox.google.com/factcheck/apis
7https://developers.google.com/custom-search/v1/overview

4

http://products.wolframalpha.com/query-recognizer/documentation/
http://products.wolframalpha.com/spoken-results-api/documentation/
https://toolbox.google.com/factcheck/apis
https://developers.google.com/custom-search/v1/overview


Figure 4: Fact-Check Repository Query Process

• High Factuality: Scientific analysis, low political bias
• Medium Factuality: Slight left/right political bias
• Low Factuality: Conspiracy/rumor websites
• Wikipedia Corpus: English Wikipedia encyclopedia entries

A query executor is used to retrieve relevant websites from some combination of the 4 search engines
(by default, only High Factuality is queried). Then, given a set of URLs, we employ a web scraper to
extract HTML content, which is then post-processed using Trafilatura [7] to remove boilerplate.

Passing this evidence into VCCheck returns a matrix Rinet ∈ RNinet×4 (same formatting as the
previous two evidence categories).

2.3 Scoring Formula

To aggregate the results from each piece of evidence, we define a relevance-weighted scoring formula,
which takes into account the confidences of VCCheck and RS for each piece of evidence. Its
formulation is given in Equation 4.

Sagree =
1∑

t∈S Nt

∑
t∈S

∑Nt

i=1R
t
i,0 × (1−Rt

i,3)

Sdiscuss =
1∑

t∈S Nt

∑
t∈S

∑Nt

i=1R
t
i,1 × (1−Rt

i,3)

Sdisagree =
1∑

t∈S Nt

∑
t∈S

∑Nt

i=1R
t
i,2 × (1−Rt

i,3)

where S = {kb, repo, inet} (4)

Note that the scores defined in Equation 4 are not normalized. Therefore, to define the final normalized
scores Snc

for each class c such that
∑
Snc

= 1, normalization is performed as: Snc
= Sc∑

Si
.

3 Model-Based Evaluation

3.1 Claim-Spotting Model Analysis

We refer the reader to Gradient-Based Adversarial Training on Transformer Networks for Detecting
Check-Worthy Factual Claims [3] for full results on the claim-spotter.

3.2 Claim-Checking Model Analysis

We evaluate VCCheck on the Fake-News Challenge (FNC) 8 dataset, which consists of claim-document
pairs that are binned into 4 classes, as discussed in Section 2.2. FNC consists of 75,000 total
datapoints, with 49,972 training and 25,028 testing samples. 9 The baseline and state-of-the-art model
comparisons are shown below.

8http://www.fakenewschallenge.org/
9It isn’t obvious that claim-checking should be formulated as a stance detection task, but the FNC hosts held

extensive interviews with fact-checkers and concluded this.
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Table 3: Stance Detection Classification Results

Model Agree Discuss Disagree Unrelated Acc F1-Mac
Gradient Boosting 14.8 2.0 69.5 96.5 86.3 46.1
SOLAT in the SWEN 10 53.8 3.6 76.0 97.9 89.1 57.8
Memory Network [8] — — — — 88.6 56.9
Fakta [9, 10] 54.6 15.1 72.6 97.7 88.2 60.0
Multi-Task Learning [11] — — — — 92.3 74.4
VCCheck 56.4 34.6 74.5 97.6 88.6 65.8

As the above table shows, VCCheck outperforms all but one past work: Neural Multi-Task Learning
for Stance Prediction [11]. While there are certainly methods to train larger language transformers,
as [11] did, we opted for a smaller BERT Base model, which improved inference speed by a factor of
≥ 2. Inspired by [11], however, we are interested in integrating multi-task pre-training and larger
(but efficient) transformer models into VeriClaim.

4 Real-World Fact-Checking Performance

4.1 Dataset Creation

Dataset performance is only one part of the equation. What about the combination of our evidence
retrieval and stance detection methods in the wild? To evaluate this, we curate a dataset of 29
claims made by Joe Biden, Donald Trump, and Hillary Clinton, the three most recent Presidential
candidates. 11 The objective is for VeriClaim to score as many correctly as possible.

Figure 5: Custom Dataset Topic Composition

These 29 claims (14 true and 15 false) were collected from PolitiFact’s website’s fact check list
page. For some entity e = {<FIRST_NAME>, <LAST_NAME>}, we can find the claims made by e
with factuality <FACTUALITY> at the url www.politifact.com/factchecks/list/?speaker=
<FIRST_NAME>-<LAST_NAME>&ruling=<FACTUALITY>.

4.2 Results & Analysis

Table 4 displays the results of running VeriClaim on the aforementioned dataset. Moreover, we
analyze VeriClaim’s performance with respect to two variables: confidence in its decision (Figure 6-
a) and the category of issue (Figure 6-b).

Notice that, in Table 4, recall on false statements is significantly higher than that of true statements.
This indicates the degree to which VeriClaim views information critically; it would rather categorize
a true claim as false than a false claim as true. This is arguably better than the alternative; the cost
on missing out on a piece of false information is, in our opinion, higher than the opposite. In the
latter case, humans would simply need to read through VeriClaim’s info dashboard (Section 5.1)
and conclude for themselves that the information agrees with the claim.

11As of the 2020 Election.
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Table 4: Fact Verification Results
Class Precision Recall F1-Score
True Statement 0.70 0.50 0.58
False Statement 0.61 0.73 0.67
Macro Average 0.66 61.5 0.63

(a) Confidence vs. Performance (b) Issue Class vs. Performance

Figure 6: Performance Analysis

Regarding Figure 6, we find significance in VeriClaim’s confidence scores: the more confident the
probabilities, the more likely a decision is to be correct. This indicates adequate calibration of the
system. Moreover, Figure 6-b shows that performance is fairly uniformly distributed across fact
domains, which aligns with our expectations.

4.3 Observations on Failure Cases

One particularly striking failure case is with numerical inputs. Each of the 29 dataset entries was
labelled as either numerical or non-numerical in nature, and out of all the incorrect predictions, 72.7%
came from claims centered around a number. A few are shown in Table 5.

Table 5: Examples of Incorrectly Classified Quantitative Claims

Poverty rates for African Americans have reached their lowest levels in the history of our country.
We spend more per student than almost any other major country in the world.

A shocking 20 veterans are committing suicide each and every day, especially our older veterans.

We attribute these failures to the emphasis on language semantics, rather than quantitative reasoning,
in present-day neural networks; large language models, even ones as sizable as GPT-3, have been
shown to struggle with this [12]. It seems reasonable that, to grapple with the nuances of quantitative
claims, we need to investigate more explicit symbolic reasoning algorithms.

5 Demo Applications

In this section, we cover methods to more smoothly communicate fact-checkers to users.

5.1 Online Fact-Checking Interface

Here, users can input a large block of text that they would like to both claim-spot and claim-check. The
interface supports content-rich displays for in-depth factuality analysis. In particular, users can review
the specific documents that VeriClaim’s claim-checker used to formulate its verdict. Each evidential
document can be clicked to reveal a detailed analysis page, which includes a paragraph-by-paragraph
breakdown.
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Figure 7: VeriClaim Website Dashboard and Detailed Breakdown

5.2 Chrome Browser Extension

Next, we implement a Google Chrome Browser Extension to bring fact-check reports directly to
the user. The extension 1) scrapes user-visited webpages for their main contents, 2) performs claim-
spotting, and 3) aggregates claim-checking results over all check-worthy claims to produce an overall
factuality report. This information is all displayed in an extension popup, which provides hyperlinks
for users who want more detailed analysis.

Figure 8: VeriClaim Chrome Extension

6 Related Works, Conclusion, and Discussion

Over the years, people have built a variety of systems for automatic end-to-end factual monitoring and
verification. These include ClaimBuster [2], Fakta [10], and WikiCheck [13]. While ClaimBuster’s
primary focus is identifying claims that are worth checking, Fakta and WikiCheck focus exclusively
on checking claims after they’ve been selected, and also with undue biases (only selecting from news
articles or Wikipedia, for example).

VeriClaim improves upon these past works by increasing the diversity of its evidence retrieval
methods, as well as streamlining the entire fact-checking process. Needless to say, however, com-
putational fact-checking is hard. This remains far from being a “solved problem”; even from an
evaluative standpoint, it’s difficult to find papers that analyze real-world performance like we do.
Fakta is evaluated purely on FNC, WikiCheck on FEVER [14], and ClaimBuster not at all.

While deep learning will certainly be a part of top-performing systems at least for the near future, we
strongly believe that future solutions can benefit from more careful, targeted engineering. Language
is full of nuance, and it’s unreasonable to expect our present-day neural networks to generalize
universally. What if we built algorithms that could carefully dissect certain classes of claims (and be
very good at this), rather than lean on large-brush, general-purpose systems that become jacks of all
trades yet masters of none?

Ruminations about deep learning aside, what VeriClaim also brings is a focus on communicating
fact-checks better to the general public, which is a critical yet easily overlooked component of social
impact research. It is our hope that researchers and fact-checkers alike can ultimately benefit from
this work.
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