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Abstract

Perceptual hashes map images with identical se-
mantic content to the same n-bit hash value, while
mapping semantically-different images to differ-
ent hashes. These algorithms carry important ap-
plications in cybersecurity such as copyright in-
fringement detection, content fingerprinting, and
surveillance. Apple’s NEURALHASH is one such
system that aims to detect the presence of illegal
content on users’ devices without compromising
consumer privacy. We make the surprising discov-
ery that NEURALHASH is approximately linear,
which inspires the development of novel black-
box attacks that can (i) evade detection of “illegal”
images, (ii) generate near-collisions, and (iii) leak
information about hashed images, all without ac-
cess to model parameters. These vulnerabilities
pose serious threats to NEURALHASH’s security
goals; to address them, we propose a simple fix
using classical cryptographic standards.

1. Introduction
In 2021, Apple unveiled NEURALHASH, an algorithm
aimed at detecting Child Sexual Abuse Material (CSAM) in
images that are uploaded to iCloud (Apple, 2021).

NEURALHASH is a perceptual hash that, in general terms,
aims to map images containing the same semantic informa-
tion to the same hash, while mapping images with differing
semantic content to different, random-looking hashes. If
executed correctly, such algorithms could potentially en-
able organizations to prevent illegal activity (e.g. copyright
infringement, storing illicit audiovisual content) without
compromising user privacy. Thus, NEURALHASH is of
great interest to the cybersecurity community.
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Unfortunately, NEURALHASH has been controversial since
its inception, due to concerns about efficacy and user pri-
vacy (Abelson et al., 2021). Recently, these concerns have
been made concrete, with studies identifying problems with
NEURALHASH’s collision resistance, privacy guarantees,
and false positive/negative rates under gradient-based adver-
sarial attacks (Struppek et al., 2021; Ygvar, 2021; Roboflow,
2021; Dwyer, 2021).

NEURALHASH relies on deep learning to hash images, in
part because semantic image matching is difficult with rule-
based or classical learning algorithms (Di Martino & Sessa,
2013; Chum et al., 2008). Despite their advantages, however,
neural networks are known to be sensitive to edge cases, sus-
ceptible to adversarial attacks, and prone to unexplainable
behavior (Goodfellow et al., 2014).

White-box adversarial attacks on neural networks are well
studied in literature; as a result, numerous gradient-based
attacks have been proposed against NEURALHASH (Atha-
lye, 2021; Struppek et al., 2021). We ask whether the same
attacks can be achieved without access to model weights, as
the ability to construct such attacks in a gradient-free setting
would imply a deeper understanding of NEURALHASH’s
inner workings. In particular, it is generally accepted that
gradient-based attacks are an unavoidable phenomenon in
deep neural networks (Ilyas et al., 2019); the presence of
strong black-box attacks may suggest deeper structural flaws
with NEURALHASH.

In this paper, we make the striking discovery that NEU-
RALHASH is approximately linear in its inputs (Section 3),
which not only violates NEURALHASH’s privacy guarantees
(Section 2.1), but also provides a framework under which
we develop several strong black-box attacks (Section 4). In
Section 5, we suggest a defense mechanism against the pro-
posed attacks and demonstrate its effectiveness. To the best
of our knowledge, we are the first to study the approximately
linear nature of NEURALHASH’s hashing mechanism.

2. Preliminaries
2.1. NEURALHASH Security and Privacy Goals

Definition 2.1. Semantic Similarity: Two images x1, x2 ∈
X are semantically similar if, given some metric function
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Figure 1. NEURALHASH Pipeline. The pre-processed image is first embedded with a contrastively-trained MobileNet (Howard et al.,
2017) convolutional neural network. The extracted features are then transformed with a randomized hashing matrix, whose outputs are
passed through a step function to generate the final binary hash (Struppek et al., 2021; Apple, 2021).

d : X × X → R and some threshold ϵ, we have that
d(x1, x2) ≤ ϵ. d can be implemented in various ways,
depending on the evaluation context.

The primary difference between NEURALHASH and clas-
sical cryptographic hashing is that NEURALHASH aims to
remain invariant under transformations that preserve seman-
tic similarity. This gives rise to the first desired property of
NEURALHASH:

Property 2.2. Neighborhood Consistency: Let x1, x2 ∈ X
be any semantically similar images and N (x) : X → H
be the NEURALHASH perceptual hashing algorithm. It
should be the case that N (x1) = N (x2). Note that, in
NEURALHASH, H = {0, 1}96.

In analyzing the behavior of NEURALHASH, we adopt a
variant of the Random Oracle Model that accounts for se-
mantic similarity. In our setting, a Perceptual Random Ora-
cle (PRO) should return a random hash for any previously-
unseen query x, and the same hash value as a previous input
x′ if x and x′ are semantically similar:

N (x) =

{
N (x′) if ∃x′. d(x, x′) ≤ ϵ

h ∼ H otherwise.
(1)

Because we expect NEURALHASH to behave as an idealized
PRO, it should satisfy the following properties:1

Property 2.3. Uniform Hashing: Let x1, x2 ∈ X be any
images that are not semantically similar. It should be the
case that (i) N (x1) ̸= N (x2) and (ii) the distributions over
N (x1) and N (x2) look indistinguishable to a computation-
ally bounded adversary. N (x1) and N (x2) should appear
to be random elements of the hash space, and therefore,

Ex1,x2∈X,d(x1,x2)>ϵ [sim(N (x1) ,N (x2))] ≤ 0.5 + negl,
(2)

where, treating hashes as binary vectors,

sim(h1, h2) =
h1 · h2

|h1||h2|
. (3)

1Assume that adversaries are computationally bounded and
have unrestricted access to the hashing oracle N (·).

Note that sim(h1, h2) is equal to one minus the normalized
Hamming distance; call it Hamming similarity.

Property 2.4. Weak Non-Invertibility: Given target hash
h∗ ∈ H, it should be impossible for an adversary to generate
any image x such that N (x) = h∗.

Property 2.5. Strong Non-Invertibility: Given any hash
h∗ ∈ H and n images x1, ..., xn sampled uniformly at
random from X , let s be the expected value of the highest
Hamming Similarity score between h∗ and the hashes of all
sampled images:

s = E{x1,...,xn}∼X

[
max
xi

sim(h∗,N (xi))

]
. (4)

Given n queries to the hashing oracle, it should be hard for
an adversary to consistently generate near collisions:

Ex [sim(N (x) , h∗)] ≤ s+ negl. (5)

The ability for an adversary to do so would suggest that
N (x) leaks information about x.

Note that our security goals for NEURALHASH are consid-
erably stricter than those of other perceptual hashes (Mi-
crosoft, 2022; Facebook, 2020), particularly in terms of pri-
vacy (Properties 2.3, 2.5). This is because NEURALHASH
is used in a client-side scanning (CSS) scheme (Bhowmick
et al., 2021) on users’ devices, where potential false posi-
tives or privacy leaks would significantly damage trust be-
tween consumers and providers.

2.2. Functional Description of NEURALHASH

NEURALHASH hashes are generated in two steps. First, a
MobileNet-based (Howard et al., 2017) convolutional neu-
ral network generates a feature vector describing the image
using 128 floating-point numbers. This vector is then mul-
tiplied by a randomized hashing matrix; the result is then
thresholded using a step function to produce the final 96-bit
binary hash. See Figure 1 for a visual depiction.

Note that the hashing matrix can be interpreted as contain-
ing ninety-six random 128-dimensional hyperplanes. To
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Figure 2. Images produced by interpolation of a face and a tree, with parameter α denoting the proportion of the first image.

generate the hash, the 128-dim feature vector is compared
with each of these hyperplanes; if the feature vector is on
the positive side of the hyperplane, the bit is 1, else 0.

2.3. Related Work in Attacking NEURALHASH

In the realm of intervention-free attacks, Dwyer (2021);
Roboflow (2021) discovered naturally-occurring NEURAL-
HASH collisions by mining publicly-available images that
were not artificially modified in any way. This demonstrates
a failure of Property 2.3.

Because NEURALHASH relies on a neural network whose
weights have been extracted and made public (Ygvar, 2021),
a variety of gradient-based attacks have also been proposed
(Struppek et al., 2021). These white-box attacks rely on
the susceptibility of neural networks to small adversarial
perturbations (Goodfellow et al., 2014), allowing malicious
actors to both evade detection (violating Property 2.2) and
generate collisions (violating Properties 2.4, 2.5) using small
amounts of adversarial noise.

Even more interesting, however, would be the existence of
strong black-box attacks; it is generally accepted that adver-
sarial examples are an unavoidable phenomenon in neural
networks. Struppek et al. (2021) makes initial headway into
this line of inquiry, showing that basic image transforma-
tions including translation, rotation, flipping, cropping, and
brightness/contrast changes can help evade detection (vio-
lating Property 2.2). The other security properties remain
underexplored in the black-box setting.

In summary, the existing literature around gradient-based
white-box attacks is fairly well-developed, but we lack a suf-
ficiently deep understanding of NEURALHASH’s behavior
to develop strong black-box attacks.

3. On NEURALHASH’s Approximate Linearity
Imagine that we have two images x1, x2 where d(x1, x2) >
ϵ. By Property 2.3, they should initially have random-
looking hashes on average, i.e. E [sim(N (x1) ,N (x2))] ≤
0.5 + negl. But what happens as we gradually move x2

towards x1? In an idealized NEURALHASH, these hashes

should remain random-looking until d(x1, x
′
2) ≤ ϵ, at which

point the hashes should match exactly.

A natural strategy for analyzing the gradual movement of
images toward each other is image interpolation. To the
best of our knowledge, this has not yet been studied in the
context of NEURALHASH.

More formally, consider taking two source images x1 and
x2 and linearly interpolating them with respect to some
parameter α. The resulting image is Iα = αx1+(1−α)x2.
Figure 2 provides a visualization of interpolation where α is
varied from 0 to 1 between an image of a French horn (x1)
and an image of a church (x2).
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Figure 3. Approximate Piecewise Linearity of NEURALHASH.
When interpolating between two images, we observe violations
of NEURALHASH’s security criteria (Property 2.3). Hashes of
semantically-unrelated images do not look random.

To quantitatively analyze the behavior of NEURALHASH
as x1, x2 are interpolated, we plot the Hamming similarity
between Iα and both x1, x2 for all α; Figure 3 displays
the results. Strikingly, as α moves from 0 to 1, the Ham-
ming similarity between Iα and the original images x1, x2

changes approximately piecewise linearly.

This provides strong evidence that NEURALHASH fails to
meet its privacy requirements. Specifically, by Property 2.3,
we would expect (i) the orange and blue lines to remain at
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roughly 0.5 in the middle region, where Iα is semantically-
identical to neither x1 nor x2, and (ii) the green line to
oscillate between 1 and 0.5. Empirically, we observe fail-
ures of both expectations.
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Figure 4. Averaged Interpolation Behavior. We average interpo-
lation similarities over a large set of randomly sampled ImageNette
pairs, plotted with 99% confidence intervals. The approximate
linearity of NEURALHASH is systematic.

Furthermore, this approximate piecewise linearity is system-
atic. In Figure 4, we average Hamming similarities over a
large set of ImageNette 2 (FastAI, 2019) pairs, finding the
same pattern with tight 99% confidence intervals.

These results are significant not only because they demon-
strate the violation of several security properties. Perhaps
more importantly, they clarify a key operational behavior
of NEURALHASH, approximate linearity, which enables us
to make fairly reliable inferences about the hashes of the
interpolations between a set of images.

4. Attacks
The approximate linearity of NEURALHASH lends itself
naturally to several attacks. Firstly, the interpolation graphs
(Figures 3, 4) suggest the possibility of an evasion attack
where, given a target image x, we can compute a seman-
tically similar image x′ by adding a small percentage of
another image, such that N (x) ̸= N (x′). This would
break the neighborhood property.

The predictability of NEURALHASH’s hashing behavior also
suggests that we might be able to generate near-collisions
where, given any target image x, we can on average generate
an image x′ that nearly collides with but is not semantically
similar to x: Ex [sim(N (x) ,N (x′))] ≫ 0.5 + negl. This

2ImageNette is a subset of ImageNet containing roughly 1000
examples from 10 classes. Note that since NEURALHASH is meant
to be a generalized perceptual hashing algorithm, it is reasonable
to use any dataset for our experiments.

breaks uniform hashing and strong non-invertibility.

Finally, we hypothesize that NEURALHASH leaks informa-
tion. Given an image x which belongs to one of n known
image classes {C1, C2, ..., Cn}, we can predict target class
Ct with probability greater than 1

n +negl. This would break
the uniform hashing property.

In the following subsections, we demonstrate that all attacks
can be realized using interpolation-based algorithms.

4.1. Evasion Attack

Attack Description. Given a source image x and an ar-
bitrary semantically-unrelated image x0, we produce a
semantically-similar image x′ = α∗x + (1 − α∗)x0 such
that N (x) ̸= N (x′). α∗ is chosen as the largest α for
which the hashes differ:

α∗ = max

{
α | N (x) ̸= N (αx+ (1− α)xo)

}
(6)

Intuitively, this selects for the interpolation that contains the
maximum possible percentage of x.

Attack Results. We consider an attack “successful” iff (i)
N (x) ̸= N (x′) and (ii) x and x′ contain the same semantic
information. To formalize the latter concept, we adopt the
Structural Similarity Index Measure (SSIM) metric, as used
in Struppek et al. (2021):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (7)

where x and y are images with means µx, µy, variances
σ2
x, σ

2
y , and covariance σxy. Moreover, c1 = 0.01, c2 =

0.03 for numerical stability. The intuition is that, by account-
ing for mean, variance, and covariance in the pixel space,
SSIM focuses on structure better than Mean-Squared Error
(MSE), for example, which can be distracted by noise.3

+ .05.95 =

611c63441f4f
cacd3abebef6

0bb006bb725d
1d2268bb6d6c

611c63441f4f
4acd3abebee6

Figure 5. Qualitative Example of Evasion. Interpolating between
the gas pump and cassette player (α∗ = 0.95, as computed using
Eqn. 6) results in an image that is semantically indistinguishable
from the original gas pump, but has a different hash.

We carry out a systematic evaluation by randomly sampling
10,000 pairs of images from ImageNette, designating one

3Note that SSIM is not robust under various transformations
such as rotation or translation, but this is not a concern because the
interpolation attack is executed with a pixelwise sum.
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of each pair to be x and the other to be x0. On average,
the attack achieves 100% efficacy with an SSIM of 0.981
(±5× 10−4 for a 95% confidence interval). Figure 5 shows
a representative example of the attack. The interpolated
image is hardly distinguishable from the original gas pump
picture, but its hash is different in multiple bit positions.

Our interpolation-based evasion attack has several advan-
tages over existing methods. In particular, transformations
such as rotation, cropping, translation, reflection, and bright-
ness/contrast adjustment (Struppek et al., 2021) do pre-
serve semantic content but nonetheless result in significant
changes to the appearance of images. By comparison, our in-
terpolation attacks cause minimal visual impact and involve
less guesswork than performing arbitrary transformations.
A limitation, however, is that the efficacy of the interpo-
lation attack is somewhat dependent on a good choice of
x0. We show that, on average, the method is highly robust,
but there are a few outlier cases where a poor choice of x0

causes SSIM to drop below 0.7.

4.2. Near-Collision Generation Attack

Attack Description. Consider a database of images X =
{x1, x2, .., xk}. Let P be a parameter space describing all
possible interpolations of images in X . Thus, each element
p ∈ P represents an interpolated image Ip where

Ip =

k∑
i=1

pixi, (8)

and pi ∈ [−1, 1] and
∑k

i=1 |pi| = 1. Then, given a target
hash h∗, we employ a genetic algorithm (Whitley, 1994) to
search P for an interpolated image whose hash maximizes
Hamming similarity with h∗. Formally, we optimize:

max
p∈P

sim(N (Ip) , h
∗) (9)

using the Hamming similarity score defined in Eqn. 3 and
with Ip as defined in Eqn. 8.

Crucially, our algorithm employs two genetic operators that
rely heavily on the properties of interpolated images ex-
plored in Section 3.

Crossover Operator Given p, q ∈ P and α ∈ [0, 1]. Com-
pute a new crossed-over parameter r = αp+(1−α)q.
Note that r is normalized after interpolation such that
Ir ≈ αIp + (1 − α)Iq. By the interpolation prop-
erty, with high probability, sim(N (Ir) , h

∗) will be
between sim(N (Ip) , h

∗) and sim(N (Iq) , h
∗), and

with some nontrivial probability it will be greater.

Mutation Operator Given p ∈ P , index m ∈ {1, . . . , k}
and α ∈ [−0.05, 0.05]. Compute a new mutated
parameter r by mutating pm by α. More formally,

∀i ̸= m. ri = pi, and rm = pm + α. By our
interpolation property, such a mutation should only
slightly change the Hamming similarity. Additionally,
with some nontrivial probability, sim(N (Ir) , h

∗) >
sim(N (Ip) , h

∗). As with the crossover operator, note
that r is normalized after mutation.

We use a population size of 100 decreasing exponentially
to 10 at a rate of 0.97. Our algorithm runs for 50 iterations,
each time generating 20 children. Each child is equally
likely to be formed as a product of a Crossover or Mutation
operator, and all other parameters (α,m, p, q) are selected
uniformly at random from the appropriate ranges.

Our database X consists of 250 images, 25 training images
from each of the 10 ImageNette classes (FastAI, 2019).
We test our algorithm on the hashes of 150 images, 15
validation images from each of the same 10 classes. To
improve performance, our hashes are encoded as {−1, 1}96
vectors rather than the standard {0, 1}96.4

Note that the approximate linearity of NEURALHASH is
crucial in enabling this attack, because it narrows the search
space from all possible images (which is unimaginably
large) to P , the set of interpolated images within a fixed
dataset. This mitigates the combinatorial explosion and
makes the problem tractable.
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Figure 6. Near Collision Generation with Genetic Algorithm.
Hamming similarity score of images generated by the genetic algo,
averaged across 150 target hashes: 15 per class × 10 classes.

Attack Results.

Our results are shown in Figure 6. While we are not di-
rectly able to find perfectly colliding images, the average

4Linear combinations of the value 0 are not meaningful.
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Figure 7. Near Collisions Created by the Genetic Algorithm. The first row contains the source image and its hash (the target hash).
The second row contains the interpolated image optimized by the genetic algorithm, its hash, and the Hamming similarity between the
interpolated image’s hash and the target hash.

Hamming similarities of generated images are about six
standard deviations above the mean of 0.5,5 indicating that
the genetic algorithm performs much better than random
generation and thus violates strong non-invertibility (Prop-
erty 2.5). This conclusion is further reinforced in Section
5 where we perform the same attack after improving the
security of the NEURALHASH system (see Figure 11).

Qualitatively, it is also interesting to see that the genetic
algorithm’s generations often share semantic similarities
in color and shape with the source image, from which the
target hash is derived (Figure 7).

4.3. Information Extraction Attack

Recall the goal of information extraction from Section 4,
where the goal is to predict the class of an image x from a
set of n classes with probability greater than 1

n +negl given
only its hash, h∗. We also assume access to a database of
images {x1, x2, .., xk} with known hashes {h1, h2, .., hk}
and known class labels {c1, c2, .., ck}.

Attack Description. Let {p1, p2, .., pk} ∈ [−1, 1]k be pa-
rameters such that

∑k
i=1 |pi| = 1. Our attack is simple:

first, minimize the following objective using gradient decent
over parameters {p1, p2, .., pk}

L(p1, p2, .., pk, h
∗) =

(
k∑

i=1

pihi − h∗

)2

−
k∑

i=1

pi log(pi).

(10)
5Viewing hashes as a binomial RV, σ =

√
npq ≈ 0.05.

Then, compute the class C with the most support:

max
C

∑
i s.t. ci=C

|pi| (11)

Note that this attack does not require model access except
when labeling the dataset, as it only utilizes the hashes of
the dataset images hi, and class labels ci.

To understand why this attack is reasonable, consider the
objective function L(·) from Eqn. 10. Imagine if we
could find a setting of parameters {p1, p2, .., pk} such that∑k

i=1 pihi = h∗. The interpolation property of the NEU-
RALHASH model would imply that N

(∑k
i=1 pixi

)
≈ h∗.

This motivates the first term of L(·).6 The second term sim-
ply aims to reduce entropy or, in other words, use the fewest
number of parameters possible to achieve the objective.

Some additional information about our approach is as fol-
lows. Our database X consists of 500 images, 50 training
images from each of the 10 ImageNette classes (FastAI,
2019). We tested our algorithm on the hashes of 1000
images, 100 validation images from each of the same 10
classes. Our algorithm runs for 25 epochs, 100 steps per
epoch, and with a learning rate of 2 · 10−5. To improve
performance, our hashes are encoded as {−1, 1}96 vectors

6One might wonder why we chose not to use a similar objective
in Section 4.2 while generating near collisions. We find that,
because the space of solutions to Eqn. 10 is fairly large, it is
difficult to consistently generate reasonable-looking in-distribution
images that resulted in hash collisions. However, we find that it
does leak a significant amount of class information.
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rather than the standard {0, 1}96.
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Figure 8. Classification Accuracy Shows Significant Informa-
tion Leakage. Classification accuracy of ImageNette images from
just their hash using an Interpolation Information Extraction At-
tack. Results averaged across 1000 target hashes: 100 per class
over 10 classes.

Attack Results. Our results, seen in Figure 8 show that
NEURALHASH hashes leak a significant amount of informa-
tion about the semantic contents of images they are derived
from. This is a clear violation of the Uniform Hashing
Property, Property 2.3. It is interesting that classification
accuracy (and therefore information leakage) seems to be
quite class dependent. As one might expect, classes con-
taining images with less clutter and clearer subjects tend to
have more information leakage.

5. Improving NEURALHASH: SHA-at-the-End
All black-box interpolation attacks presented in Section 4
all rely on the approximate linearity of N (x). We aim to
nullify this property.

Method Description. To address the undesirable linear-
ity of NEURALHASH, we propose a simple yet effective
extension: adding a SHA-256 block at the very end of
the computation. Revisiting the security definitions from
Section 2, we find that this strengthens the uniform hash-
ing and noninvertibility properties while maintaining the
neighborhood property: if N (x) = N (x′), then it must
be true that SHA (N (x)) = SHA (N (x′)). Moreover, if
N (x) ̸= N (x′), then under the Random Oracle Model
(ROM) their hashes will (i) look uniformly random and (ii)
be non-invertible.

Method Results. First, we check whether the interpolation
graph behaves as expected. As seen in Figure 9, the Ham-
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Figure 9. Interpolation Results using SHA-at-the-End. As ex-
pected, SHA breaks the linearity of NEURALHASH (compare to
Figure 3).
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Figure 10. Averaged Interpolation Under SHA. Here we demon-
strate that the impact of SHA is systematic, and the violation of
security properties is alleviated (compare to Figure 4).

ming similarities hover around 0.5 (except at the borders),
and the similarity between adjacent interpolations oscillates
between 1 and ≈ 0.5. Figure 10 demonstrates that these
trends are systematic. This suggests that SHA-at-the-end
successfully breaks approximate linearity.

We further these conclusions experimentally by re-
attempting the same interpolation attacks for collision gen-
eration (Section 4.2) and information extraction (Section
4.3) with the new system architecture.7 From Figure 11, we
see that the ability to generate near-collisions is significantly
hindered by the SHA block. The algorithm still consistently

7Note that we do not attempt to defend against the evasion
attack (Section 4.1), as it will clearly work just as well. While
the evasion attack does rely on the interpolation property, it is
ultimately determined by NEURALHASH’s neighborhood property,
which our proposed change has no impact on.
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Figure 11. SHA Hinders Collision Generation with Genetic Al-
gorithm. Hamming similarity score of images generated by the
genetic algorithm averaged across 150 SHA-ed target hashes: 15
per class over 10 classes (compare to Figure 6).

produces images with Hamming similarities greater than
0.5, but this is reasonable; the expected similarity of the
maximum of many randomly-sampled hashes is greater than
the expectation of just one hash. From Figure 12, we also
see that SHA-at-the-end completely disables information
leakage, and the overall classification accuracy is approxi-
mately 10%, as expected. We conclude that SHA provides
a simple defense mechanism against both these attacks.

6. Conclusion
In this paper, we have proposed and analyzed a variety
of black-box attacks that expose vulnerabilities of Apple’s
NEURALHASH algorithm. In particular, our black box at-
tacks suggest that NEURALHASH is fundamentally flawed
aside from the existence of gradient-based adversarial exam-
ples; this is a much stronger statement than the white-box
case. At the core of these attacks is our discovery that NEU-
RALHASH’s outputs change approximately linearly with
respect to its inputs. Furthermore, we suggest a simple mod-
ification and demonstrate that it nullifies the piecewise linear
property while successfully safeguarding against some of
our proposed attacks.

This goes to show the immense difficulty of designing per-
ceptual hashing algorithms that are both robustly effective
and private. There remains much work to be done before
such systems can be integrated into client-side scanning for
real-world use.
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Figure 12. SHA Disables Information Leakage. Imagenette clas-
sification accuracy from SHA-ed hashes using an Interpolation
Information Extraction Attack. Results averaged across 1000 tar-
get hashes: 100 per class over 10 classes (compare to Figure 8).
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